Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Three-dimensional networks in bis(imidazolium) 2,2'-dithiodibenzoate and 4-methylimidazolium 2-[(2-carboxyphenyl)disulfanyl]benzoate

Linheng Wei, ${ }^{\text {a }}$ Ziliang Wang ${ }^{\text {b }}$ * and Xianggao Meng ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Natural Resources and Environmental Science, College of Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ${ }^{\mathrm{C}}$ Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
Correspondence e-mail: zlwang@henu.edu.cn

Received 24 July 2009
Accepted 2 August 2009
Online 15 August 2009
Cocrystallization of imidazole or 4-methylimidazole with $2,2^{\prime}$ dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, $2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{2-}$, (I), and $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{-}$, (II), respectively. Compound (I) crystallizes in the monoclinic $C 2 / c$ space group with the midpoint of the $S-S$ bond lying on a twofold axis. The component ions in (I) are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network, which is further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network. In contrast, by means of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by $\pi-\pi, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, resulting in a three-dimensional network.

Comment

2,2'-Dithiodibenzoic acid ($\mathrm{H}_{2} \mathrm{DTBB}$), possessing two carboxyl groups, has often been employed in coordination complexes (Wang et al., 2007, 2008; Murugavel et al., 2001). However, due to its poor solubility in water, molecular adducts based on H_{2} DTBB have been reported for only a few cases to date (Meng et al., 2008; Li et al., 2001; Cai et al., 2006; Kang et al., 2002; Hu et al., 2004). In order to investigate crystal engineering involving two hydrogen-bonded R - COOH groups and an N -containing heterocycle in the solid state, we used H_{2} DTBB and imidazole (Im) or 4-methylimidazole (4-MeIm) as potential cocrystallization agents in our experiments. According to the $\Delta \mathrm{p} K_{a}$ rule (Meng et al., 2009; Childs et al., 2007), a $1: 1$ type of organic salt for the combination of H_{2} DTBB and Im, and a 1:2 organic salt (acid to base) for
H_{2} DTBB and 4-MeIm, should both exist theoretically [for a $1: 1$ salt, $\Delta \mathrm{p} K_{a 1}=11.1$ and $\Delta \mathrm{p} K_{a 2}=10.4$; for a 1:2 salt, $\Delta \mathrm{p} K_{a 1}=$ 11.5 and $\left.\Delta \mathrm{p} K_{a 2}=10.8\right]$. However, when H_{2} DTBB and Im were mixed and stirred in methanol solution in a molar ratio of $1: 1$, only some of the H_{2} DTBB was dissolved, showing that the preparation of the target compound was hampered by the poor solubility of $\mathrm{H}_{2} \mathrm{DTBB}$ in methanol. For the second combination, although H_{2} DTBB and 4-MeIm can be easily dissolved in methanol in a molar ratio of 1:2, the result is an oil-like compound when the humidity level in the air exceeds 20%. Further research on this will be carried out for the 1:1 and 1:2 organic salts. We report here the crystal structures of the title salts, $2\left(4-\mathrm{MeIm}^{+}\right) \cdot \mathrm{DTBB}^{2-}$, (I), and $4-\mathrm{MeIm}{ }^{+}$.-HDTBB^{-}, (II).

(I)

(II)

In (I), half of a $2,2^{\prime}$-dithiodibenzoate dianion (DTBB^{2-}) and one imidazolium (Im^{+}) cation, linked by an $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bond (see Fig. 1 and Table 1), comprise the asymmetric unit. The two halves of the DTBB $^{2-}$ ion are related by a twofold axis lying across the mid-point of the $S-S$ bond. Both the dihedral angle between the two benzene rings [76.80 (11) ${ }^{\circ}$] and the bridging $\mathrm{S}-\mathrm{S}$ bond length [2.0476 (10) Å] are comparable with those observed in some analogous compounds [Cambridge Structural Database (CSD, Version 5.30 of November 2008; Allen 2002) refcodes MIPVAI (Li et al., 2001), MUFNIK (Bi et al., 2002), WUBHOQ (Kang et al., 2002), XEBDEO (Cai et al., 2006) and XEXFOV (Basiuk et al., 1999)]. The deprotonation of the H_{2} DTBB molecule and protonation of imidazole were very clearly shown in difference maps and the relevant dimensions are fully in accord with this: $\mathrm{C} 7-\mathrm{O} 1=1.259(2) \AA$ and $\mathrm{C} 7-$ $\mathrm{O} 2=1.250(2) \AA$, and $\mathrm{C} 2^{\prime}-\mathrm{N} 1=1.315(3) \AA$ and $\mathrm{C}^{\prime}-\mathrm{N} 3=$

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.]

Figure 2
The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Figure 3
Part of the crystal structure of (I), showing the three-dimensional network formed only by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Hydrogen bonds are shown as short dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted. The area outlined by a dotted line shows the (001) layer in the domain $0.530<z<0.970$.
1.316 (3) A.. Compound (I) can be regarded as a binary 2:1 organic salt, according to Aakeröy \& Salmon (2005).

The asymmetric unit of (II) (Fig. 2) contains a 4-methylimidazolium ($4-\mathrm{MeIm}^{+}$) ion and a hydrogen $2,2^{\prime}$-dithiodibenzoate anion (HDTBB^{-}), both lying in general positions, forming a $1: 1$ salt. The dihedral angle between the two benzene rings and the disulfide bridge are 73.50 (10) and 2.0504 (8) A. As with (I), the H atoms involved in the hydrogen bonding were unequivocally located from difference map plots and the resulting ion dimensions are fully in accord with these H -atom locations: at the deprotonated carboxyl group, $\mathrm{C} 7-\mathrm{O} 1=1.264$ (3) \AA and $\mathrm{C} 7-\mathrm{O} 2=1.239$ (3) \AA. For the carboxyl group, the main bond lengths are $\mathrm{C} 27-\mathrm{O} 3(\mathrm{H})=$ 1.320 (3) \AA and $\mathrm{C} 27-\mathrm{O} 4=1.205$ (3) \AA, again in accord with the location of the carboxyl H atom at O3. In the 4-MeIm ${ }^{+}$ cation, the $\mathrm{C} 2^{\prime}-\mathrm{N} 1$ and $\mathrm{C}^{\prime}-\mathrm{N} 3$ bond lengths of 1.315 (4) and 1.310 (4) \AA, respectively, are almost the same as those

Figure 4
Part of the crystal structure of (II), showing the formation of the onedimensional tape running parallel to the [1 $\overline{1} 0]$ direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted. See Table 2 for symmetry codes.

Figure 5
Part of the crystal structure of (II), showing the formation of the threedimensional network. Hydrogen bonds are shown as short dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted. The area outlined by a continuous dotted line shows part of the [1 $\overline{1} 0]$ tape.
found in (I), consistent with the delocalization of the imidazole ring.

In the crystal packing of (I), the DTBB^{2-} anion and the Im^{+} cation are linked into a two-dimensional network by the $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogen bonds (see Table 1 and Fig. 3; symmetry code as in Table 1) running parallel to the (001) plane in the domain $0.530<z<0.970$. These adjacent networks are linked by a $\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bond, resulting in a three-dimensional network (Fig. 3; symmetry code as in Table 1). PLATON (Spek, 2009) calculations show that there are no significant $\mathrm{C}-\mathrm{H} \cdots \pi$ or $\pi-\pi$ interactions in the packing of (I).

In the structure of (II), the HDTBB^{-}anion and 4-MeIm ${ }^{+}$ cation are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate a tape extending in the [1 $\overline{1} 0$] direction (shown in Fig. 4 and with details in Table 2). The $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{iii}}$ (symmetry code as in Table 2) and $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bonds serve to generate a centrosymmetric $R_{4}^{4}(16)$ ring (Bernstein et al., 1995). These $R_{4}^{4}(16)$ rings are linked by an $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$ (symmetry code as in Table 2) hydrogen bond to form the tape shown in Fig. 4. These tapes are further linked to form a three-dimensional network (Fig. 5)
by a combination of $\pi-\pi$ interactions $[C g 1 \cdots C g 1(-x, 1-y$, $2-z$), with a centroid-centroid distance of 3.9798 (17) \AA and an interplanar spacing of $3.6820(12) \AA$, where $C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring], a $\mathrm{C}^{\prime}-\mathrm{H}_{2}{ }^{\prime} \cdots \mathrm{O} 4^{v}$ interaction (symmetry code as in Table 2) and a $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 2$ interaction $\left[\mathrm{H} 4 \cdots C g 2=2.94 \AA\right.$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots C g 2=136^{\circ}$, where $C g 2$ is the centroid of the $\mathrm{C} 21-\mathrm{C} 26$ ring at $(x-1, y, z)]$.

Experimental

2, 2^{\prime}-Dithiodibenzoic acid $(0.2 \mathrm{mmol}, 0.0612 \mathrm{~g})$ and imidazole $(0.2 \mathrm{mmol}, 0.0136 \mathrm{~g})$ were dissolved in 95% methanol (10 ml). The resulting clear solution was kept in air for 3 d . Colourless plateshaped crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation from the solution (yield $17.7 \mathrm{mg}, 40 \%$, based on $1: 2$ cocrystallization). Similarly, colourless block-shaped crystals of compound (II) were obtained by mixing equivalent molar amounts of $2,2^{\prime}$-dithiodibenzoic acid $(0.2 \mathrm{mmol}$, 0.0612 g) and 4-methylimidazole ($0.2 \mathrm{mmol}, 0.0164 \mathrm{~g}$) in 95% methanol (10 ml) (yield $43.5 \mathrm{mg}, 56 \%$, based on 1:1 cocrystallization).

Compound (I)

Crystal data

$2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{2-}$
$M_{r}=442.50$
Monoclinic, $C 2 / c$
$a=17.0142$ (13) \AA
$b=5.9064$ (4) \AA
$c=19.9254$ (15) \AA
$\beta=94.228(1)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.905, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.129$
$S=1.06$
2283 reflections

Compound (II)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{-}$
$M_{r}=388.45$
Triclinic, $P \overline{1}$
$a=8.2486$ (5) \AA 。
$b=10.1528$ (6) \AA
$c=11.3724$ (7) \AA
$\alpha=70.359(1)^{\circ}$
$\beta=82.112(2)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.927, T_{\text {max }}=0.968$
$V=1996.9(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.30 \times 0.30 \times 0.04 \mathrm{~mm}$

10805 measured reflections 2283 independent reflections 1721 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

136 parameters

H-atom parameters constrained
$\Delta \rho_{\max }=0.38 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

$$
\gamma=81.285(1)^{\circ}
$$

$V=882.81(9) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

9067 measured reflections
3427 independent reflections
2884 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	1.81	$2.643(2)$	162
$\mathrm{~N} 3-\mathrm{H}^{\prime} \cdots{ }^{2}{ }^{\mathrm{i}}$	0.86	1.86	$2.710(2)$	172
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.27	$3.185(3)$	167

Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+\frac{1}{2},-y-\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.86	1.94	$2.764(3)$	161
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1$	0.86	2.80	$3.408(2)$	129
N3-H3 $\cdots 1^{\mathrm{iii}}$	0.86	1.90	$2.720(3)$	159
$\mathrm{O}^{\text {2 }}-\mathrm{H} 3^{\prime} \cdots 1^{\text {iv }}$	0.82	1.81	$2.613(3)$	168
$\mathrm{C}^{\prime}-\mathrm{H} 2^{\prime} \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.57	$3.209(3)$	127

Symmetry codes: (iii) $-x+1,-y+2,-z+1$; (iv) $x+1, y-1, z$; (v) $x, y+1, z$.

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$

$$
236 \text { parameters }
$$

$w R\left(F^{2}\right)=0.136 \quad \mathrm{H}$-atom parameters constrained
$S=1.13$
3427 reflections
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$

For both compounds, all H atoms were clearly visible in difference maps and were subsequently allowed for as riding atoms in the refinements: $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic or $0.96 \AA$ for methyl H atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\right.$ aromatic C) or $1.5 U_{\text {eq }}($ methyl C), $\mathrm{N}-\mathrm{H}=0.86 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$, and $\mathrm{O}-\mathrm{H}=0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3123). Services for accessing these data are described at the back of the journal.

References

Aakeröy, C. B. \& Salmon, D. J. (2005). CrystEngComm, 7, 439-448.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Basiuk, E. V., Gomex-Lara, J., Basiuk, V. A. \& Toscano, R. A. (1999). J. Chem. Crystallogr. 29, 1157-1169.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bi, W., Sun, D., Cao, R. \& Hong, M. (2002). Acta Cryst. E58, o837-o839.
Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, Y.-P., Sun, F., Zhu, L.-C., Yu, Q.-Y. \& Liu, M.-S. (2006). Acta Cryst. E62, o841-o842.
Childs, S. L., Stahly, G. P. \& Park, A. (2007). Mol. Pharm. 4, 323-338.
Hu, R.-F., Wen, Y.-H., Zhang, J., Li, Z.-J. \& Yao, Y.-G. (2004). Acta Cryst. E60, o2029-o2031.
Kang, Y., Hu, R.-F., Qin, Y.-Y., Li, Z.-J., Chen, Y.-B., Wen, Y.-H., Cheng, J.-K. \& Yao, Y.-G. (2002). Acta Cryst. E58, o959-o960.
Li, W., Zhang, J. P., Tong, M. L. \& Chen, X. M. (2001). Aust. J. Chem. 54, 213217.

Meng, X. G., Cheng, C. X. \& Yan, G. (2009). Acta Cryst. C65, o217-o221.

organic compounds

Meng, X.-G., Xiao, Y.-L., Zhang, H. \& Zhou, C.-S. (2008). Acta Cryst. C64, o261-o263.
Murugavel, R., Baheti, K. \& Anantharaman, G. (2001). Inorg. Chem. 40, 68706878.

Sheldrick, G. M. (1997). SADABS. Version 2.10. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, Z. L., Wei, L. H., Li, M. X. \& Wang, J. P. (2008). Chin. J. Struct. Chem. 27, 1327-1332.
Wang, Z. L., Yang, L. R. \& Wang, J. P. (2007). Z. Naturforsch. Teil B, 62, 14871490.

